Deep Neural Networks in a Mathematical Framework

Deep Neural Networks in a Mathematical Framework by Anthony L. Caterini


ISBN
9783319753034
Published
Binding
Paperback
Pages
84
Dimensions
155 x 235mm

This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks.

This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.
EOFY 2025 Book Frenzy
96.04
RRP: $112.99
15% off RRP


This product is unable to be ordered online. Please check in-store availability.
Instore Price: $112.99
Enter your Postcode or Suburb to view availability and delivery times.


RRP refers to the Recommended Retail Price as set out by the original publisher at time of release.
The RRP set by overseas publishers may vary to those set by local publishers due to exchange rates and shipping costs.
Due to our competitive pricing, we may have not sold all products at their original RRP.