This classic text analyses the trajectories of aircraft, missiles, satellites, and spaceships subjected to uniform and central gravitational forces, aerodynamic forces, and thrust. Suitable for students and professionals in aerodynamic engineering, the treatment illustrates the wealth of related problems in applied mathematics and addresses their solutions in terms of vehicle design. The three-part approach begins with a survey of foundations that covers general principles of kinematics, dynamics, aerodynamics, and propulsion. Subsequent chapters examine quasi-steady flight over a flat earth with applications to aircraft powered by turbojet, turbofan, and ramjet engines flying at subsonic, transonic, and supersonic speeds. The final chapters explore nonsteady flight over a flat earth with applications to rocket vehicles operating in the hypervelocity domain. A helpful appendix with material on properties of the atmosphere concludes the text.