Lambda-Matrices and Vibrating Systems

Lambda-Matrices and Vibrating Systems by PETER LANCASTER


Authors
PETER LANCASTER
ISBN
9780486425467
Published
Binding
Hardcover
Pages
208
Dimensions
140 x 220 x 12mm

This text covers several aspects and solutions of the problems of linear vibrating systems with a finite number of degrees of freedom. It offers a detailed account of the part of the theory of matrices necessary for efficient problem-solving, beginning with a focus on developing the necessary tools in matrix theory in the first four chapters. The following chapters present numerical procedures for the relevant matrix formulations and the relevant theory of differential equations.Directed toward a wide audience of applied mathematicians, scientists, and engineers, this book has much to offer all those interested in problem-solving from both practical and theoretical points of view. The mathematically sound treatment involves readers in a minimum of mathematical abstraction; it assumes a familiarity and facility with matrix theory, along with a knowledge of elementary calculus (including the rudiments of the theory of functions of a complex variable).Those already engaged in the practical analysis of vibrating systems have the option of proceeding directly to the more applications-oriented material, starting with Chapter 7; however, this comprehensive treatment offers ample background in the early chapters for less experienced readers. New Preface to the Dover Edition. Errata List. Preface. Bibliographical Notes. References. Index.
Back to School Book Frenzy 2025
23.79
RRP: $27.99
15% off RRP


This product is unable to be ordered online. Please check in-store availability.
Instore Price: $27.99
Enter your Postcode or Suburb to view availability and delivery times.


RRP refers to the Recommended Retail Price as set out by the original publisher at time of release.
The RRP set by overseas publishers may vary to those set by local publishers due to exchange rates and shipping costs.
Due to our competitive pricing, we may have not sold all products at their original RRP.